Fall Detection Using Gyroscope Data

Jayani Tripathi

Table of Contents:

1.	Introduction	3
2.	Data and Preprocessing	3
3.	Steps and Implementation	3
4.	Model Training	4
5.	Live Classification	4
6.	Conclusion	5

Introduction

The fall detection system uses gyroscope data to classify activities and identify potential falls. This system employs a decision tree classification model and derives features from gyroscope signals. It has applications in healthcare, particularly for monitoring the elderly or individuals at risk of falling.

Dataset and Preprocessing

- 1. Dataset Structure:
 - Data files are categorized into directories corresponding to specific activities.
 - Each file contains gyroscope readings (accel_x, accel_y, accel_z) and timestamps.

2. Preprocessing Steps:

- **Magnitude Calculation:** The magnitude of acceleration is calculated: magnitude= $x^2+y^2+z^2$ \text{magnitude} = $\left\{x^2 + y^2 + z^2\right\}$ The mean value is subtracted from the magnitude to normalize the data.
- **Noise Removal:** A low-pass Butterworth filter with a cutoff frequency of 5 Hz is applied to smooth the signal.
- 3. Feature Extraction: Statistical features are extracted for each data window:
 - Mean, maximum, median, minimum, standard deviation, and interquartile range (IQR).
- 4. **Windowing:** Data is segmented into fixed-sized windows (e.g., 10 seconds), with each window labeled based on the activity.

Model Training

- 1. Feature Selection: The following features were selected:
 - Average (avg), Maximum (max), Median (med), Minimum (min), First Quartile (q25), Third Quartile (q75), Standard Deviation (std).

2. Classifier:

- A Decision Tree Classifier was used with:
 - Criterion: entropy
 - Maximum Depth: 5
- 3. Train-Test Split:
 - Data was split into training (70%) and testing (30%) sets.

4. Evaluation Metrics:

- Accuracy Score
- Classification Report (Precision, Recall, F1-Score)
- Confusion Matrix

Live Classification

1. Input Data:

Live gyroscope readings are processed in real time, containing accel_x, accel_y, and accel_z.

2. **Processing:**

- Magnitude is calculated, and features are extracted from the live data.
- A pre-trained Decision Tree model (saved as dt_model.pkl) is used to predict the activity.

3. Output:

• Predicted activity labels are provided in real time.

Results

1. Model Performance:

- The decision tree classifier achieved an accuracy of X% on the test set (replace with actual value upon implementation).
- Classification Report:

2.

Confusion Matrix: The confusion matrix highlights the classifier's performance, showcasing correct and incorrect predictions across activities.

	precision	recall	f1-score	support
Downstairs	0.60	0.50	0.55	6
Falling	0.83	0.95	0.88	20
Jumping	0.67	0.40	0.50	5
Running	0.75	0.90	0.82	10
Standing	1.00	0.83	0.91	6
Upstairs	0.33	0.60	0.43	5
Walking	1.00	0.67	0.80	15
accuracy			0.76	67
macro avg	0.74	0.69	0.70	67
weighted avg	0.80	0.76	0.76	67

Accuracy on test set: 0.7611940298507462

3. Live Data Prediction:

• The system successfully classified live data with minimal delay.

Conclusion

- The fall detection system demonstrates effective activity classification using gyroscope data and decision tree modeling.
- Robust preprocessing (e.g., noise removal, feature engineering) contributes significantly to its performance.
- Future work may include:
 - Expanding the dataset for diverse activity coverage.
 - Incorporating other classification models like Random Forest or Neural Networks for potential performance improvements.
 - Optimizing parameters for faster real-time predictions.

Note: Please feel free to email me for the code of this project!